A Multidecadal Climate Signal Propagating Across the Northern Hemisphere through Indices of a Synchronized Network
by Wyatt, Marcia Glaze, Ph.D., UNIVERSITY OF COLORADO AT BOULDER, 2012, 220 pages; 3527373


Proxy and instrumental records reflect a quasi-cyclic 50-to-80-year climate signal across the Northern Hemisphere. Three studies, the collection of which is presented in this thesis, document evidence, or lack thereof, of this proposed climate signal.

In the first study, chapter two, an eight-member collection of geographically and dynamically diverse twentieth-century climate indices was analyzed with multivariate statistical techniques to assess collective behavior of the network. Emergent from the results was a picture of a climate signal propagating through a sequence of synchronized atmospheric and lagged oceanic circulations across the Northern Hemisphere. Tempo of the signal's multidecadal variability appears related to that of the low-frequency oscillatory pattern of sea-surface-temperature distribution across the North Atlantic basin, the Atlantic Multidecadal Oscillation (AMO).

The third chapter features the second study, the goals of which were two-fold: to gain insights into mechanism of the propagating signal identified in the first study and to probe the signal's history. Data sets included twentieth-century data and proxy data spanning the interval 1700 to 2000. Findings suggest (i) the observed 20th century signal-propagation has existed in somewhat similar fashion for the 300-year length of this study; (ii) Eurasian-Arctic Shelf sea-ice plays a strong role in the propagation of the hemispheric climate signal; and (iii) dynamics fundamental to generation of the multidecadal component of the Northern Hemisphere's surface temperature are encoded onto the records of key proxy indices, the combined signatures of which trace the hemispheric circumnavigation of the secularly varying, sequentially propagating climate signal.

In the final study in this collection, detailed in chapter four, a network of simulated climate indices, reconstructed from a data set generated by models of the third Coupled Intercomparison Project (CMIP3), were analyzed. Of sixty analyses performed on these networks, none succeeded in reproducing a propagating multidecadal quasi-oscillatory signal. This result, standing in stark contrast to those of the first two studies, may imply that physical mechanisms relevant to signal propagation may be missing from this suite of general circulation models.

AdvisersPeter H. Molnar; Roger A. Pielke, Sr.
SourceDAI/B 74-02(E), Oct 2012
Source TypeDissertation
SubjectsGeology; Climate change; Paleoclimate science
Publication Number3527373
Adobe PDF Access the complete dissertation:

» Find an electronic copy at your library.
  Use the link below to access a full citation record of this graduate work:
  If your library subscribes to the ProQuest Dissertations & Theses (PQDT) database, you may be entitled to a free electronic version of this graduate work. If not, you will have the option to purchase one, and access a 24 page preview for free (if available).

About ProQuest Dissertations & Theses
With over 2.3 million records, the ProQuest Dissertations & Theses (PQDT) database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

The database includes citations of graduate works ranging from the first U.S. dissertation, accepted in 1861, to those accepted as recently as last semester. Of the 2.3 million graduate works included in the database, ProQuest offers more than 1.9 million in full text formats. Of those, over 860,000 are available in PDF format. More than 60,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - http://www.proquest.com - or call ProQuest Hotline Customer Support at 1-800-521-3042.