Molecular composition and chemical transformation of secondary organic aerosols from biogenic precursors

by Nguyen, Tran Bao, Ph.D., UNIVERSITY OF CALIFORNIA, IRVINE, 2012, 382 pages; 3513104

Abstract:

There are large gaps surrounding our understanding of secondary organic aerosols (SOA), which represent a significant fraction of fine particulate matter globally. One of the most difficult aspects of SOA to characterize is the molecular composition, because it is both complex and dynamic. However, the composition of SOA determines to a large extent the impact SOA has on climate, atmospheric chemistry, and human health. The main focus of this dissertation is the detailed composition analysis of SOA generated from important biogenic precursors and the characterization of chemistry induced by their simulated interaction with clouds, anthropogenic pollutants, and solar radiation. In particular, the gas- and aerosol-phase compounds associated with SOA from isoprene, the most abundant volatile organic compound emitted from the biosphere, are studied with the advanced technique of high-resolution mass spectrometry (HR MS). Many SOA compounds, particularly nitrogen-containing organics, are reported for the first time. Spectroscopy tools like UV-Vis, FT-IR and NMR are also used to characterize optical properties and molecular structures of SOA compounds. A secondary focus of this dissertation is to describe brown carbon formation from the ammonium- and amino acid-mediated aging of limonene SOA. Brown carbon changes the optical properties of SOA, but the sources are poorly understood. The experiments presented in this dissertation aim to elucidate the previously unknown precursors, kinetics and products of the reaction. The molecular detail gained from the HR-MS and spectroscopic analyses provides tremendous insight into the formation mechanism and further atmospheric reactions of SOA.

AdviserSergey A. Nizkorodov
SchoolUNIVERSITY OF CALIFORNIA, IRVINE
Source TypeDissertation
SubjectsAtmospheric chemistry; Analytical chemistry; Environmental science
Publication Number3513104

About ProQuest Dissertations & Theses
With nearly 4 million records, the ProQuest Dissertations & Theses (PQDT) Global database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

PQDT Global combines content from a range of the world's premier universities - from the Ivy League to the Russell Group. Of the nearly 4 million graduate works included in the database, ProQuest offers more than 2.5 million in full text formats. Of those, over 1.7 million are available in PDF format. More than 90,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - http://www.proquest.com - or contact ProQuest Support.