Mapping biological ideas: Concept maps as knowledge integration tools for evolution education
by Schwendimann, Beat Adrian, Ph.D., UNIVERSITY OF CALIFORNIA, BERKELEY, 2011, 381 pages; 3499067


Many students leave school with a fragmented understanding of biology that does not allow them to connect their ideas to their everyday lives (Wandersee, 1989; Mintzes, Wandersee, & Novak, 1998; Mintzes, Wandersee, & Novak, 2000a). Understanding evolution ideas is seen as central to building an integrated knowledge of biology (Blackwell, Powell, & Dukes, 2003; Thagard & Findlay, 2010). However, the theory of evolution has been found difficult to understand as it incorporates a wide range of ideas from different areas (Bahar et al., 1999; Tsui & Treagust, 2003) and multiple interacting levels (Wilensky & Resnick, 1999; Duncan & Reiser, 2007; Hmelo-Silver et al., 2007). Research suggests that learners can hold a rich repertoire of co-existing alternative ideas of evolution (for example, Bishop & Anderson, 1990; Demastes, Good, & Peebles, 1996; Evans, 2008), especially of human evolution (for example, Nelson, 1986; Sinatra et al., 2003; Poling & Evans, 2004). Evolution ideas are difficult to understand because they often contradict existing alternative ideas (Mayr, 1982; Wolpert, 1994; Evans, 2008). Research suggests that understanding human evolution is a key to evolution education (for example, Blackwell et al., 2003; Besterman & Baggott la Velle, 2007).

This dissertation research investigates how different concept mapping forms embedded in a collaborative technology-enhanced learning environment can support students' integration of evolution ideas using case studies of human evolution. Knowledge Integration (KI) (Linn et al., 2000; Linn et al., 2004) is used as the operational framework to explore concept maps as knowledge integration tools to elicit, add, critically distinguish, group, connect, and sort out alternative evolution ideas. Concept maps are a form of node-link diagram for organizing and representing connections between ideas as a semantic network (Novak & Gowin, 1984). This dissertation research describes the iterative development of a novel biology-specific form of concept map, called Knowledge Integration Map (KIM), which aims to help learners connect ideas across levels (for example, genotype and phenotype levels) towards an integrated understanding of evolution.

Using a design-based research approach (Brown, 1992; Cobb et al., 2003), three iterative studies were implemented in ethically and economically diverse public high schools classrooms using the web-based inquiry science environment (WISE) (Linn et al., 2003; Linn et al., 2004).

Study 1 investigates concept maps as generative assessment tools. Study 1A compares the concept map generation and critique process of biology novices and experts. Findings suggest that concept maps are sensitive to different levels of knowledge integration but require scaffolding and revision. Study 1B investigates the implementation of concept maps as summative assessment tools in a WISE evolution module. Results indicate that concept maps can reveal connections between students' alternative ideas of evolution.

Study 2 introduces KIMs as embedded collaborative learning tools. After generating KIMs, student dyads revise KIMs through two different critique activities (comparison against an expert or peer generated KIM). Findings indicate that different critique activities can promote the use of different criteria for critique. Results suggest that the combination of generating and critiquing KIMs can support integrating evolution ideas but can be time-consuming.

As time in biology classrooms is limited, study 3 distinguishes the learning effects from either generating or critiquing KIMs as more time efficient embedded learning tools. Findings suggest that critiquing KIMs can be more time efficient than generating KIMs. Using KIMs that include common alternative ideas for critique activities can create genuine opportunities for students to critically reflect on new and existing ideas. Critiquing KIMs can encourage knowledge integration by fostering self-monitoring of students' learning progress, identifying knowledge gaps, and distinguishing alternative evolution ideas.

This dissertation research demonstrates that science instruction of complex topics, such as human evolution, can succeed through a combination of scaffolded inquiry activities using dynamic visualizations, explanation activities, and collaborative KIM activities. This research contributes to educational research and practice by describing ways to make KIMs effective and time efficient learning tools for evolution education. Supporting students' building of a more coherent understanding of core ideas of biology can foster their life-long interest and learning of science.

AdviserMarcia C. Linn
SourceDAI/A 73-07(E), Mar 2012
Source TypeDissertation
SubjectsEducational technology; Science education
Publication Number3499067
Adobe PDF Access the complete dissertation:

» This is an open access dissertation.
  Use the link below to access the full text PDF of this graduate work:
  Use the link below to search and retrieve all open access dissertations:

About ProQuest Dissertations & Theses
With over 2.3 million records, the ProQuest Dissertations & Theses (PQDT) database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

The database includes citations of graduate works ranging from the first U.S. dissertation, accepted in 1861, to those accepted as recently as last semester. Of the 2.3 million graduate works included in the database, ProQuest offers more than 1.9 million in full text formats. Of those, over 860,000 are available in PDF format. More than 60,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - - or call ProQuest Hotline Customer Support at 1-800-521-3042.