A Multi-scale Framework for Modeling Instabilities in Fluid-Infiltrated Porous Solids

by Sun, WaiChing, Ph.D., NORTHWESTERN UNIVERSITY, 2011, 129 pages; 3456707

Abstract:

Many natural and man-made materials, such as sand, rock, concrete and bone, are multiconstituent, fluid-infiltrated porous solids. The failure of such materials is important for various engineering applications, such as CO2 sequestration, energy storage and retrieval and aquifer management as well as many other geotechnical engineering problems aimed to prevent catastrophic failures due to pore pressure build-up.

This dissertation investigates two mechanical aspects of fluid infiltrated porous media, i.e., the predictions of diffuse and localized failures of porous media and the heterogeneous microstructures developed after failures. We define failures as material conditions in which homogeneous deformation becomes unattainable.

To detect instabilities, a critical state plasticity model for sand is implemented. By seeking bifurcation points of the incremental, linearized constitutive responses, we establish local criteria that detect onsets of drained soil collapse, static liquefaction and formation of deformation bands under locally drained and undrained conditions. Fully undrained and drained triaxial compression simulations are conducted and the stability of the numerical specimens are assessed via a perturbation method.

To characterize deformation modes after failures, a multi-scale framework is designed to determine microstructural attributes from pore space extracted from X-ray tomographic images and improve the accuracy and speed of a multi-scale lattice Boltzmann/finite element hierarchical flow simulation algorithm. By comparing the microstructural attributes and macroscopic permeabilities inside and outside a compaction band formed in Aztec Sandstone, our numerical study reveals that elimination of connected pore space and increased tortuosity are the main causes that compaction bands are flow barriers.

AdvisersJose E. Andrade; John W. Rudnicki
SchoolNORTHWESTERN UNIVERSITY
Source TypeDissertation
SubjectsMechanics; Geological engineering; Civil engineering
Publication Number3456707

About ProQuest Dissertations & Theses
With nearly 4 million records, the ProQuest Dissertations & Theses (PQDT) Global database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

PQDT Global combines content from a range of the world's premier universities - from the Ivy League to the Russell Group. Of the nearly 4 million graduate works included in the database, ProQuest offers more than 2.5 million in full text formats. Of those, over 1.7 million are available in PDF format. More than 90,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - http://www.proquest.com - or contact ProQuest Support.