Polarization and hyperfine transitions of metastable 129Xe in discharge cells and pressure shift of Cs in Neon

by Xia, Tian, Ph.D., PRINCETON UNIVERSITY, 2011, 92 pages; 3437789


This thesis summarizes the results of two experimental studies of spin polarized atoms.

In the first experiments, I studied optically pumped metastable Xe atoms that were produced in glass cells with weak electrical discharges in low-pressure Xe gas. The polarization and relaxation rates of metastable 129Xe atoms are measured with magnetic resonance spectroscopy, at both microwave frequencies, where ΔF = 1 transitions are induced between the sublevels, and at radiofrequencies, corresponding to ΔF = 0 transitions. The nuclear spin polarization of the optically pumped velocity group is measured to be 22 ± 2%. The relaxation of metastable xenon atoms is dominated by depolarizing collisions with ground state atoms. We also present a model to simulate the density matrix with optical pumping and the magnetic resonances, and to use the resulting density matrix to simulate the attenuation of the optical pumping light, which provides the primary data for my studies.

The second experiments were aimed at detecting any non-linearities in the pressure shift of the hyperfine frequency of Cs atoms in Ne buffer gas. Such nonlinear shifts can be produced by the formation and breakup of CsNe Van der Waals molecules. Nonlinear shifts have been observed in the heavier buffer gases, Ar, Kr and Xe. My work shows the nonlinear part of the pressure shift from Ne is too small to be detectable with my apparatus, the most sensitive available today.

AdviserWilliam Happer
Source TypeDissertation
SubjectsAtomic physics
Publication Number3437789

About ProQuest Dissertations & Theses
With nearly 4 million records, the ProQuest Dissertations & Theses (PQDT) Global database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

PQDT Global combines content from a range of the world's premier universities - from the Ivy League to the Russell Group. Of the nearly 4 million graduate works included in the database, ProQuest offers more than 2.5 million in full text formats. Of those, over 1.7 million are available in PDF format. More than 90,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - http://www.proquest.com - or contact ProQuest Support.