Dielectrophoretic characterization of particles and erythrocytes

by Srivastava, Soumya Keshavamurthy, Ph.D., MISSISSIPPI STATE UNIVERSITY, 2010, 302 pages; 3412673


Medical lab work, such as blood testing, will one day be near instantaneous and inexpensive via capabilities enabled by the fast growing world of microtechnology. In this research study, sorting and separation of different ABO blood types have been investigated by applying alternating and direct electric fields using dielectrophoresis in microdevices. Poly(dimethylsiloxane) (PDMS) microdevices, fabricated by standard photolithography techniques have been used. Embedded perpendicular platinum (Pt) electrodes to generate forces in AC dielectrophoresis were used to successfully distinguish positive ABO blood types, with O+ distinguishable from other blood types at >95% confidence. This is an important foundation for exploring DC dielectrophoretic sorting of blood types.

The expansion of red blood cell sorting employing direct current insulative dielectrophoresis (DC-iDEP) is novel. Here Pt electrodes were remotely situated in the inlet and outlet ports of the microdevice and an insulating obstacle generates the required dielectrophoretic force. The presence of ABO antigens on the red blood cell were found to affect the dielectrophoretic deflection around the insulating obstacle thus sorting cells by type. To optimize the placement of insulating obstacle in the microchannel, COMSOL Multiphysics ® simulations were performed. Microdevice dimensions were optimized by evaluating the behaviors of fluorescent polystyrene particles of three different sizes roughly corresponding to the three main components of blood: platelets (2-4 μm), erythrocytes (6-8 μm) and leukocytes (10-15 μm). This work provided the operating conditions for successfully performing size dependent blood cell insulator based DC dielectrophoresis in PDMS microdevices. In subsequent studies, the optimized microdevice geometry was then used for continuous separation of erythrocytes. The microdevice design enabled erythrocyte collection into specific channels based on the cell’s deflection from the high field density region of the obstacle. The channel with the highest concentration of cells is indicative of the ABO blood type of the sample.

DC resistance measurement system for quantification of erythrocytes was developed with single PDMS microchannel system to be integrated with the DC-iDEP device developed in this research. This lab-on-a-chip technology application could be applied to emergency situations and natural calamities for accurate, fast, and portable blood typing with minimal error.

Key words: Microdevices, dielectrophoresis, insulating dielectrophoresis, human ABO blood system

AdviserAdrienne R. Minerick
Source TypeDissertation
SubjectsBiomedical engineering; Chemical engineering
Publication Number3412673

About ProQuest Dissertations & Theses
With nearly 4 million records, the ProQuest Dissertations & Theses (PQDT) Global database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

PQDT Global combines content from a range of the world's premier universities - from the Ivy League to the Russell Group. Of the nearly 4 million graduate works included in the database, ProQuest offers more than 2.5 million in full text formats. Of those, over 1.7 million are available in PDF format. More than 90,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - http://www.proquest.com - or contact ProQuest Support.