The biogeochemical influences of nitrate, dissolved oxygen, and dissolved organic carbon on stream nitrate uptake
by Thouin, Joseph A., M.S., UNIVERSITY OF NEW HAMPSHIRE, 2008, 56 pages; 1459519


Streams are important hotspots for the retention and removal of nitrogen (N), an element that contributes to eutrophication and threatens the stability of coastal ecosystems. Nitrate (NO3-) is the most mobile form of N, and understanding the causal mechanisms that foster optimal NO3- retention and removal in stream systems is critical from both predictive and conservation standpoints. Dissolved organic carbon (DOC) is hypothesized to be a major control of instream NO 3- concentrations, but dissolved oxygen (DO) is also an important control of NO3- removal processes. Assessing the individual impacts of NO3-, DO, and DOC concentrations on stream NO3- removal is difficult due to the natural interdependencies of these nutrients in the carbon and nitrogen cycles. This study took an experimental approach to quantifying the influences of NO3-, DOC, and DO on NO3 - transport within two headwater streams of the Ipswich and Parker River watersheds, MA, with contrasting levels of DOC and DO. In a first set of experiments we added increasing levels of NO3- to address how uptake kinetics differed in a low DO/high DOC stream (Cedar Swamp Creek) versus a high DO/low DOC stream (Cart Creek). In a second set of experiments, we manipulated for the first time at the reach scale both DO and DOC in a factorial experiment. DO was added to the low DO stream by injecting oxygen, and removed from the high DO stream by adding sodium sulfite. DOC was added both alone and in combination with the DO manipulations. Results from the NO3- enrichments suggest NO3 - concentration is an important control of NO3- vertical velocity. Results from the DOC and DO manipulations suggest that DO determines whether a stream has net nitrate uptake or production, and that DOC magnifies these processes. Addition of DOC by itself did not lead to increased nitrate uptake, suggesting that inverse relationships between nitrate and DOC may arise from complex interactions among DOC, DO and nitrate concentrations and how they influence dominant stream processes. In addition to these findings, we also observed organic matter “priming effects” (Kuzyakov et al. 2000) not previously reported in stream systems.

Keywords. nitrate, nitrate uptake, dissolved oxygen, dissolved organic carbon, net nutrient uptake, solute addition, priming effect

SourceMAI/ 47-02, Dec 2008
Source TypeThesis
SubjectsHydrologic sciences; Biogeochemistry
Publication Number1459519
Adobe PDF Access the complete dissertation:

» Find an electronic copy at your library.
  Use the link below to access a full citation record of this graduate work:
  If your library subscribes to the ProQuest Dissertations & Theses (PQDT) database, you may be entitled to a free electronic version of this graduate work. If not, you will have the option to purchase one, and access a 24 page preview for free (if available).

About ProQuest Dissertations & Theses
With over 2.3 million records, the ProQuest Dissertations & Theses (PQDT) database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

The database includes citations of graduate works ranging from the first U.S. dissertation, accepted in 1861, to those accepted as recently as last semester. Of the 2.3 million graduate works included in the database, ProQuest offers more than 1.9 million in full text formats. Of those, over 860,000 are available in PDF format. More than 60,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - - or call ProQuest Hotline Customer Support at 1-800-521-3042.