The Role of Hyperinsulinemia in Breast Cancer Progression

by Zelenko, Zara, Ph.D., ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI, 2016, 125 pages; 10129345


Women with Type 2 diabetes (T2D) have a 49% increase in breast cancer related mortality compared to women without T2D. Epidemiological studies report that increased endogenous insulin levels and increased insulin receptor (IR) expression are associated with poor survival in breast cancer patients. Therefore, it is essential to investigate the role of endogenous hyperinsulinemia on breast cancer progression. Presented in this thesis are contributions to understanding the effect of insulin in a mouse model of hyperinsulinemia (MKR mouse). First, data is shown that highlights the significant increase in primary MVT-1 tumors and pulmonary metastasis in the MKR mouse compared to Wild Type mice. The studies presented show that the primary tumors from the MKR mice have significantly higher Vimentin protein expression compared to primary tumors from control mice. Next, the studies determine that silencing Vimentin expression in the tumor cells leads to either decreased number of pulmonary metastasis in the hyperinsulinemic mice. The work in this thesis also establishes a novel immunodeficient hyperinsulinemic (Rag/MKR) mouse model that enabled the study of the effects of endogenous insulin on the progression of human cancer cells. The hyperinsulinemia of the Rag/MKR mice promoted a significant increase in tumor growth of MDA-MB-231 and LCC6 cells. The knockdown of the insulin receptor in the LCC6 cells led to primary tumors that were significantly smaller in both the hyperinsulinemic Rag/MKR and Rag/WT control mice compared to the tumors from the LCC6 control cells. Finally, it is shown for the first time that the knockdown of the IR promotes a reversal of the epithelial-mesenchymal phenotype by repressing mesenchymal markers and re-expressing epithelial markers in the LCC6 insulin receptor knockdown tumors. The data presented in this thesis highlight a potential contribution to the understanding of the role of insulin in the setting of hyperinsulinemia and provide potential targets for therapy to improve survival in women with breast cancer and hyperinsulinemia.

AdviserDerek LeRoith
Source TypeDissertation
SubjectsMolecular biology; Cellular biology; Oncology
Publication Number10129345

About ProQuest Dissertations & Theses
With nearly 4 million records, the ProQuest Dissertations & Theses (PQDT) Global database is the most comprehensive collection of dissertations and theses in the world. It is the database of record for graduate research.

PQDT Global combines content from a range of the world's premier universities - from the Ivy League to the Russell Group. Of the nearly 4 million graduate works included in the database, ProQuest offers more than 2.5 million in full text formats. Of those, over 1.7 million are available in PDF format. More than 90,000 dissertations and theses are added to the database each year.

If you have questions, please feel free to visit the ProQuest Web site - - or contact ProQuest Support.